On fluid Models of turbulence, structures and transport in ExB partially magnetized plasmas

A. Smolyakov¹
O. Chapurin¹, O. Koshkarov¹, I. Romadanov¹,
Y. Raitses,², I. Kaganovich²,
G. Hagelaar³, S. Sadouni³
M. Cappelli⁴

1University of Saskatchewan, Canada
²Princeton University and PPPL
³Stanford University
⁴LAPLACE & Université Paul Sabatier

Comments on:

- Do we need fluid models?
- Why do we need fluid models?
- Is there any relevant physics that can be adequately described by fluid models?

What can we get/expect from fluid theory/simulations?

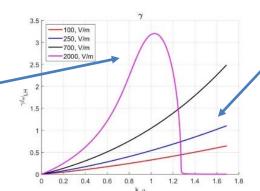
- Common wisdom: Fluid theory describes well large scale phenomena
 - Length scales $k_{\perp}^2 \rho_e^2 \le 1$ but also $k_{\perp}^2 \rho_e^2 \ge 1$ with extended (Pade type) closures
 - Time scales $\omega < \omega_{ce}$
- Common wisdom: Fluid theory does not describe kinetic/resonant and complex phase space phenomena, e.g. Landau damping and wave-particle interactions/drive, phase mixing in velocity space...
 - Eg cold unmagnetized ions may be OK within fluid models but for finite temperature $\omega < v_{Ti}/L$ kinetic description is required
 - Do we need the kinetic model for ions and neutrals?
 - What happens with electrons along the magnetic field lines? Parallel resonances? Sheath boundary conditions?

but (on a positive side)

 Closures (eg Hammett-Perkins) are being developed for some <u>linear</u> waveparticle resonance phenomena to be used in fluid equations

What can we get/expect from fluid theory/simulations in context of ExB plasma (eg Hall thruster)?

- Common knowledge: gradients of plasma density, magnetic field in combination with ExB dridt and resistivity result in wide range of "fluid" mode and instabilities: gradient-drift modes, lower hybrid, Simon-Hoh, ion sound, ... All of them can be put into the framework of fluid equations/models.
 - Simon, Hoh, Tilinin, Esipchuk, Timofeev, Fridman, Sakawa, ... Litvak,
 Fisch, Chablier, Ahedo, Fernandez,...Frias, Smolyakov, Lakhin,
- Suppression of some most violent modes with magnetic field profiling was successfully guided by the fluid models (Morozov stabilization criteria $E \cdot \nabla (n/B) > 0$)


Common knowledge of two important facts about ExB devices (including Hall thrusters)

- Electron transport is anomalous (often)
- Large structures (spokes, breathing modes,..) are observed (often)

Large (long-wavelength) length scales VS small length scales

• Typically (often) coexist

The most unstable linearly are small scale modes (e.g. lower-hybrid type)

Improper physics model: Cut-off at short scales:

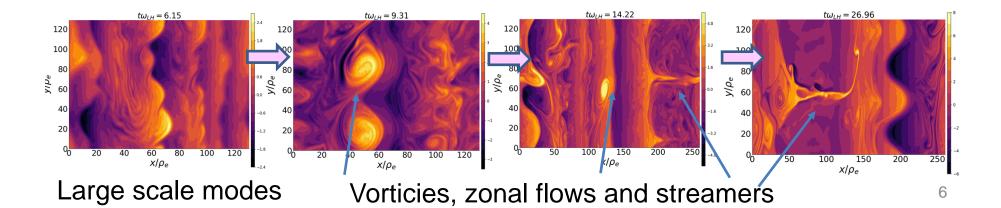
$$\rho_e^2, \lambda_{De}^2, ...$$

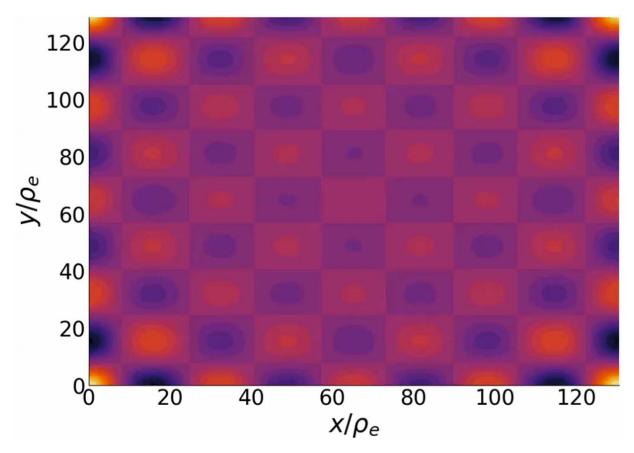
• Anomalous transport is often dominated by the contributions from large scale modes, as seen from simple maxing length arguments and simulations

$$D \sim \frac{\left(\Delta x\right)^2}{\tau} \sim \frac{\gamma}{k^2}$$

• Contrary to 3D neutral fluid turbulence (Kolmogorov cascade to small scales), in magnetized plasma energy flow direction can be from small to large scale –

INVERSE CASCADE: Large scale modes/structures can be formed by nonlinear drive/self-organization (modulational instability) from small scale modes (modulational instability of lower hybrid/gradient drift modes-70s-80s, ... Lakhin, Smolyakov PoP 2016 for ExB plasmas)


2D fluid model and simulations (azimuthal – axial) of


gradient-drift/Simon-Hoh/resistive/lower-hybrid modes with ExB, density gradient and ion beam; but double-periodic, no gradients evolution Smolyakov et al., PPCF 2017

Nonlinear development leads to the long wavelength modes (inverse energy cascade) and structures: **vorticies, zonal flows, streamers**Koshkarov et al, 2018

time

Inverse cascade, self organization and coherent structures
Where does Jupiter get his stripes?

What about the electron transport?

300

• Anomalous current is highly intermittent (both in fluid and kinetic simulations)

Transport does not look like a diffusion process. If so, it cannot be characterized by the diffusion/mobility parametrization. In general requires SOC (self-organized-criticality) methods for avalanche like transport. K-E closure models used in gas dynamics are not appropriate due to large fluctuations ~50-100%. Watch for presence of relatively rare but large events? Experimental confirmation? Emerging challenge?

Thank you.